
Personalized Education in the Era of AI I

Recap on Control, Reinforcement Learning, Game Theory

Ruixiang Wu & Costas Courcoubetis

October 30, 2025

School of Data Science

Table of contents

1. Recap: Linear Control

2. Recap: Reinforcement Learning

3. Recap: Game Theory

1

Recap: Linear Control

Classic Linear Quadratic Control: Problem Formulation

Consider a system with state xt ∈ Rd and control ut ∈ Rk . The

dynamics are given by:

xt+1 = Axt + But ,

The incurred cost is:

x⊤t Qxt + u⊤t Rut ,

for positive definite matrices Q and R.

A policy π : Rd 7→ Rk maps the current state to a control action. The

cost of a policy over T steps is:

JT (π) =
T−1∑
t=1

x⊤t Qxt + u⊤t Rut + x⊤T QT xT ,

The solution is a linear feedback policy:

ut = −Kxt

2

Linear Feedback Policy: An Informal Proof

We see the problem through the lens of Dynamic Programming:

JT = x⊤T QT xT (1a)

Jt(xt) = min
ut
{x⊤t Qxt + u⊤t Rut + Jt+1(Axt + But)} (1b)

We write Eq. 1b for t = T − 1.

JT−1(xT−1) = min
uT−1

{x⊤T−1QxT−1 + u⊤T−1RuT−1

+ (AxT−1 + BuT−1)
⊤QT (AxT−1 + BuT−1)} (2)

By differentiating with respect to uT−1 and by setting the derivative

equal to zero, we obtain:

u∗T−1 = −(B⊤QTB + R)−1B⊤QTAxT−1

Plug it into Eq. 2, we have:

JT−1(xT−1) = x⊤T−1KT−1xT−1,

where:

KT−1 = A⊤ (
QT − QTB(B

⊤QB + R)−1BQT

)
A+ Q 3

Classic Model Predictive Control: Problem Formulation

MPC uses a model to predict the system’s future evolution and solve an

online optimization problem at each time step.

Core Idea: Receding Horizon Control At each time step t, given the

current state xt :

1. Optimize: Solve a finite-horizon optimal control problem over a

prediction horizon H:

min
ut|t ,...,ut+H−1|t

H−1∑
k=0

(x⊤t+k|tQxt+k|t + u⊤t+k|tRut+k|t)

s.t. xt+k+1|t = Axt+k|t + But+k|t

xt|t = xt (current state)

2. Apply: Apply only the first optimal control action:

ut = u∗t|t

Key Advantage: Unlike the LQR’s pre-computed (offline) policy, MPC

can explicitly handle state and control constraints. 4

Control Learning Resources

• Video Series:

• Steve Brunton’s “Control Bootcamp” series on YouTube.

• Click: Link to the playlist

• Textbook:

• “Dynamic programming and optimal control” [1]

• Chap 1: Dynamic Programming Algorithms.

• Chap 3: Continuous-Time Optimal Control.

• Chap 4: Discrete-Time Optimal Control.

• Chap 5: State Estimation

5

https://www.youtube.com/watch?v=Pi7l8mMjYVE&list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m

Recap: Reinforcement Learning

Introduction to Markov Decision Processes (MDPs)

An MDP is formally defined by a tuple (S,A,P,R, γ):

• S: State Space: A finite set of states representing the different

situations an agent can be in. (e.g., current position on a board

game, specific image on a screen.)

• A: Action Space: A finite set of actions available to the agent in

each state. (e.g., move left, jump, attack.)

• P(s ′|s, a): Transition Probability Function: The probability of

transitioning to state s ′ from state s after taking action a. (Defines

the dynamics of the environment.)

• R(s, a, s ′): Reward Function: The immediate scalar reward

received after transitioning from state s to s ′ by taking action a.

• γ: Discount Factor: A value between 0 and 1 that determines the

present value of future rewards. A higher γ means future rewards are

considered more important.

A policy π is a mapping from S to A. An optimal policy π∗ minimize the

discounted sum over (possibly) infinite horizon: E [
∑∞

t=0 γ
tR(st , at , st+1)] 6

Model Based Reinforcement Learning i

Key point of “Model Based”: Know P(s ′, s, a), and R(s, a). (i.e. Assume

that the MDP model is known.)

A Model Based RL Algorithm: Policy Iteration: Policy Iteration is a

classic model-based algorithm in reinforcement learning used to find an

optimal policy π∗.

The Core Idea: It finds the optimal policy by iteratively repeating two

simple steps:

1. Policy Evaluation: Determine how effective the current policy is.

2. Policy Improvement: Use that knowledge to improve the policy.

This process is repeated until the policy no longer improves, at which

point it has converged to the optimal policy.

7

Model Based Reinforcement Learning ii

Step 1: Policy Evaluation

Goal: Given a fixed, deterministic policy π, calculate the state-value

function V π(s) for all states s.

This step answers the question: ”What is the expected long-term reward

if we follow policy π from each state?”

To find V π, we solve the Bellman Equation for the policy π. This

equation expresses the value of a state as the expected immediate reward

plus the discounted value of the next state.

V π(s) =
∑
s′

P(s ′|s, π(s)) (R(s, π(s), s ′) + γV π(s ′))

For a finite number of states, this is a system of linear equations that can

be solved for V π.

8

Model Based Reinforcement Learning iii

Step 2: Policy Improvement

Goal: Given the value function V π for a policy π, find a better policy π′.

We improve the policy by acting greedily with respect to the value

function V π.

For each state s, we update the policy by choosing the action that

maximizes the expected value, looking one step ahead:

π′(s)← argmax
a∈A

{∑
s′

P(s ′|s, a) (R(s, a, s ′) + γV π(s ′))

}

This new greedy policy π′ is guaranteed to be an improvement over (or

equal to) the old policy π. That is, for all states s:

V π′
(s) ≥ V π(s)

9

Model Based Reinforcement Learning iv

Policy Iteration Algorithm

1. Initialization: Start with an arbitrary policy π0.

2. Iteration: For k = 0, 1, 2, . . .

2.1 Policy Evaluation: Compute the value function for the current

policy πk .

Vk ← V πk

2.2 Policy Improvement: Create a new greedy policy πk+1 using Vk .

πk+1(s)← argmax
a

∑
s′

P(s ′|s, a)
(
R(s, a, s ′) + γVk(s

′)
)

2.3 Check for Convergence: If πk+1(s) = πk(s) for all states s, then

stop.

3. Termination: Return the final policy πk+1 and value function Vk .

10

Model Based Reinforcement Learning v

Another Model Based RL Algorithm: Value Iteration.:

The Core Idea: Instead of iterating on the policy, Value Iteration

iteratively improves the value function until it converges to the optimal

value function, V ∗. The optimal policy is then extracted just once at the

very end.

The algorithm finds the optimal value function by repeatedly applying the

Bellman Optimality Equation as an update rule:

The Update Rule
Starting with an initial value function V0 (e.g., all zeros), each iteration

k + 1 updates the value of every state s using the values from the

previous iteration Vk :

Vk+1(s)← max
a∈A

∑
s′

P(s ′|s, a) (R(s, a, s ′) + γVk(s
′))

11

Model Free Reinforcement Learning i

“Model Free”: MDP is unknown, rely on sampling strategies to learn.

A simple model free RL algorithm is Temporal Difference learning, where

the value function is updated using the estimate from one step ahead.

TD Target (R̂): The value we are trying to move our estimate towards.

It’s the immediate reward plus the discounted value of the *next* state.

R̂ = rk + γVold(sk+1)

TD Error (δk): The difference between the TD Target and our old

estimate.

δk = R̂ − Vold(sk) = [rk + γVold(sk+1)− Vold(sk)]

TD(0) Update Rule: We update the old value by moving it a small step

(α) in the direction of the TD Error.

Vnew (sk)← Vold(sk) + α · δk

12

Model Free Reinforcement Learning ii

TD(n): n-Step Look Ahead

Generalizes TD(0) by looking n + 1 steps into the future to form the

target.

• TD(1) Target: R
(1)
ˆ = rk + γrk+1 + γ2V (sk+2)

• TD(2) Target: R
(2)
ˆ = rk + γrk+1 + γ2rk+2 + γ3V (sk+3)

General n-Step TD Target (R
(n)
ˆ)

R
(n)
ˆ = rk + γrk+1 + · · ·+ γnrk+n + γn+1Vold(sk+n+1)

R
(n)
ˆ =

n∑
j=0

γj rk+j + γn+1Vold(sk+n+1)

TD(n) Update Rule

Vnew (sk)← Vold(sk) + α[R
(n)
ˆ − Vold(sk)]

13

Model Free Reinforcement Learning iii

A representative example of Model Free RL is Q Learning, which directly

learns the optimal action-value function, denoted q∗, regardless of the

policy being followed for exploration.

The update rule is defined as:

Q(St ,At)← Q(St ,At) + α

 Rt+1 + γmax
a

Q(St+1, a)︸ ︷︷ ︸
TD Target: Best possible next value

−Q(St ,At)︸ ︷︷ ︸
Old value


Difference between on-policy and off-policy?

14

Deep Reinforcement Learning i

Key point of “Deep”: Using a Deep Neural Network to approximate the

value function or quality function.

Policy Gradient Methods

The Core Idea
Policy Gradient methods optimize a parameterized policy πθ(s, a)

directly. The parameters θ could be the weights of a neural network.

• The goal is to adjust θ to maximize the total expected reward, J(θ).

• We do this by performing gradient ascent on the policy parameters.

• This approach is often more effective in high-dimensional or

continuous action spaces.

15

Deep Reinforcement Learning ii

The Policy Gradient Update The update is guided by the Policy

Gradient Theorem, which provides an expression for the gradient of the

expected reward.

Policy Gradient Theorem
The gradient of the objective function J(θ) is given by the expectation:

∇θJ(θ) = Eπθ
[Qπθ (s, a)∇θ log πθ(s, a)]

Want to see the proof? J(θ) =
∑

s∈S P(s)
∑

a∈A Q(s, a)πθ(s, a)

The Update Rule
The policy parameters are then updated via gradient ascent:

θnew ← θold + α∇θJ(θ)

where α is the learning rate.

16

Deep Reinforcement Learning iii

The Challenge for Classic RL: Representation
Classic RL methods often use tables to store values for each state (e.g.,

Q-tables). This is impossible for problems with huge state spaces, like

video games, where a single screen has more states than atoms in the

universe!

The Solution: Deep RL
Combine the power of deep learning for function approximation with

the decision-making framework of reinforcement learning.

We use deep neural networks to approximate the key RL functions:

• Policy: π(s, a) ≈ π(s, a, θ)

• Value Function: V (s) ≈ V (s, θ)

• Q-Function: Q(s, a) ≈ Q(s, a, θ)

17

Deep Reinforcement Learning iv

Deep Q-Networks (DQN): DQN uses a deep neural network to

approximate the Q-function: Q(s, a) ≈ Q(s, a, θ).

How It Works
Instead of updating a table, DQN trains the network weights θ by

minimizing a loss function based on the TD error from Q-learning:

• The network takes the state s (e.g., screen pixels) as input and

outputs Q-values for all possible actions.

• The loss function to minimize is the squared difference between the

TD target and the network’s prediction.

DQN Loss Function

L(θ) = E


R + γmax

a′
Q(S ′, a′, θtarget)︸ ︷︷ ︸

TD Target

−Q(S , a, θ)︸ ︷︷ ︸
Prediction


2

18

Reinforcement Learning Overview

Figure 1: Overview of the World of RL.

19

Reinforcement Learning Resources

• Video Series:

• Steve Brunton’s “Reinforcement Learning” series on YouTube.

• Click: Link to the playlist

• Textbook:

• “Reinforcement Learning: An Introduction” [3]

• Chap 3: Basic MDP formulation.

• Chap 4: DP formulation.

• Chap 6: Classic RL algorithms (TD learning, Q learning).

• Chap 13: Policy gradient method.

• Survey Paper:

• Comprehensive Survey of Reinforcement Learning: From Algorithms

to Practical Challenges [2]

20

https://www.youtube.com/watch?v=0MNVhXEX9to&list=PLMrJAkhIeNNQe1JXNvaFvURxGY4gE9k74

Recap: Game Theory

Key Concepts in Game Theory

• Players: The decision makers within the game.

• Strategies: The plans or actions that players can take.

• Payoffs: The outcomes or rewards players receive as a result of the

strategies chosen.

• Nash Equilibrium:

• A Nash Equilibrium occurs when each player’s strategy is optimal

given the strategies of all other players.

• Formally, a strategy profile (s∗1 , s
∗
2 , . . . , s

∗
n) is a Nash Equilibrium if no

unilateral deviation is beneficial for any player, i.e., for each player i ,

ui (s
∗
i , s

∗
−i) ≥ ui (si , s

∗
−i),∀si ∈ Si ,

where ui is the payoff function for player i , si is player i ’s strategy, Si

is the strategy set for player i , and s∗−i represents the strategy profile

of all players except for player i .

21

The Prisoner’s Dilemma

Scenario:

• Two members of a criminal gang are arrested and imprisoned.

• Each prisoner is in solitary confinement with no means of

communicating with the other.

• The prosecutors lack sufficient evidence to convict on the principal

charge, but they have enough to convict on a lesser charge.

• Prisoners are given the opportunity to betray each other or to

remain silent.

22

The Prisoner’s Dilemma (Continued)

Nash Equilibrium:

• Each prisoner has two strategies: to“testify” or to “stay silent”.

• The Nash Equilibrium occurs when each player’s strategy is optimal,

given the other’s strategy.

• In the Prisoner’s Dilemma, the Nash Equilibrium is for both

prisoners to betray each other, as betrayal provides a better outcome

regardless of the other’s decision.

• Despite mutual cooperation yielding a better collective outcome, the

individual incentive to defect leads to a worse overall outcome.

23

Game Theory Learning Resources

• Video Series:

• Game theory vidoe series on YouTube.

• Click: Link to the playlist

24

https://www.youtube.com/playlist?list=PLdUzuimxVcC0QCFYP0Af3TNldswjL8_ep

References i

D. Bertsekas.

Dynamic programming and optimal control: Volume I,

volume 4.

Athena scientific, 2012.

M. Ghasemi, A. H. Moosavi, and D. Ebrahimi.

A comprehensive survey of reinforcement learning: From

algorithms to practical challenges, 2025.

R. S. Sutton and A. G. Barto.

Reinforcement Learning: An Introduction.

A Bradford Book, Cambridge, MA, USA, 2018.

25

	Recap: Linear Control
	Recap: Reinforcement Learning
	Recap: Game Theory

