## Personalized Education in the Era of Al I

Recap on Control, Reinforcement Learning, Game Theory

Ruixiang Wu & Costas Courcoubetis

October 30, 2025

School of Data Science

#### **Table of contents**

1. Recap: Linear Control

2. Recap: Reinforcement Learning

3. Recap: Game Theory

## Recap: Linear Control

## Classic Linear Quadratic Control: Problem Formulation

Consider a system with state  $x_t \in \mathbb{R}^d$  and control  $u_t \in \mathbb{R}^k$ . The dynamics are given by:

$$x_{t+1} = Ax_t + Bu_t,$$

The incurred cost is:

$$x_t^\top Q x_t + u_t^\top R u_t,$$

for positive definite matrices Q and R.

A policy  $\pi: \mathbb{R}^d \mapsto \mathbb{R}^k$  maps the current state to a control action. The cost of a policy over T steps is:

$$J_{T}(\pi) = \sum_{t=1}^{T-1} x_{t}^{\top} Q x_{t} + u_{t}^{\top} R u_{t} + x_{T}^{\top} Q_{T} x_{T},$$

The solution is a linear feedback policy:

$$u_t = -Kx_t$$

## Linear Feedback Policy: An Informal Proof

We see the problem through the lens of Dynamic Programming:

$$J_T = x_T^\top Q_T x_T \tag{1a}$$

$$J_t(x_t) = \min_{u_t} \{ x_t^\top Q x_t + u_t^\top R u_t + J_{t+1} (A x_t + B u_t) \}$$
 (1b)

We write Eq. 1b for t = T - 1.

$$J_{T-1}(x_{T-1}) = \min_{u_{T-1}} \{ x_{T-1}^{\top} Q x_{T-1} + u_{T-1}^{\top} R u_{T-1} + (A x_{T-1} + B u_{T-1})^{\top} Q_{T} (A x_{T-1} + B u_{T-1}) \}$$
(2)

By differentiating with respect to  $u_{T-1}$  and by setting the derivative equal to zero, we obtain:

$$u_{T-1}^* = -(B^\top Q_T B + R)^{-1} B^\top Q_T A x_{T-1}$$

Plug it into Eq. 2, we have:

$$J_{T-1}(x_{T-1}) = x_{T-1}^{\top} K_{T-1} x_{T-1},$$

where:

$$K_{T-1} = A^{\top} (Q_T - Q_T B (B^{\top} Q B + R)^{-1} B Q_T) A + Q$$

### Classic Model Predictive Control: Problem Formulation

MPC uses a model to predict the system's future evolution and solve an online optimization problem at each time step.

**Core Idea: Receding Horizon Control** At each time step t, given the current state  $x_t$ :

1. **Optimize:** Solve a finite-horizon optimal control problem over a prediction horizon *H*:

$$\begin{aligned} \min_{u_{t|t},...,u_{t+H-1|t}} \sum_{k=0}^{H-1} (x_{t+k|t}^\top Q x_{t+k|t} + u_{t+k|t}^\top R u_{t+k|t}) \\ \text{s.t.} \quad x_{t+k+1|t} &= A x_{t+k|t} + B u_{t+k|t} \\ x_{t|t} &= x_t \quad \text{(current state)} \end{aligned}$$

2. **Apply:** Apply **only the first** optimal control action:

$$u_t = u_{t|t}^*$$

**Key Advantage:** Unlike the LQR's pre-computed (offline) policy, MPC can explicitly handle state and control constraints.

## **Control Learning Resources**

#### Video Series:

- Steve Brunton's "Control Bootcamp" series on YouTube.
- Click: Link to the playlist

#### Textbook:

- "Dynamic programming and optimal control" [1]
- Chap 1: Dynamic Programming Algorithms.
- Chap 3: Continuous-Time Optimal Control.
- Chap 4: Discrete-Time Optimal Control.
- Chap 5: State Estimation

# Recap: Reinforcement Learning

## Introduction to Markov Decision Processes (MDPs)

#### An MDP is formally defined by a tuple $(S, A, P, R, \gamma)$ :

- S: **State Space**: A finite set of states representing the different situations an agent can be in. (e.g., current position on a board game, specific image on a screen.)
- A: Action Space: A finite set of actions available to the agent in each state. (e.g., move left, jump, attack.)
- P(s'|s, a): **Transition Probability Function**: The probability of transitioning to state s' from state s after taking action a. (Defines the dynamics of the environment.)
- R(s, a, s'): **Reward Function**: The immediate scalar reward received after transitioning from state s to s' by taking action a.
- γ: Discount Factor: A value between 0 and 1 that determines the present value of future rewards. A higher γ means future rewards are considered more important.

A policy  $\pi$  is a mapping from  $\mathcal S$  to  $\mathcal A$ . An optimal policy  $\pi^*$  minimize the discounted sum over (possibly) infinite horizon:  $\mathbb E\left[\sum_{t=0}^\infty \gamma^t R(s_t,a_t,s_{t+1})\right]$ 

## Model Based Reinforcement Learning i

Key point of "Model Based": Know P(s', s, a), and R(s, a). (i.e. Assume that the MDP model is known.)

A Model Based RL Algorithm: Policy Iteration: Policy Iteration is a classic model-based algorithm in reinforcement learning used to find an optimal policy  $\pi^*$ .

**The Core Idea:** It finds the optimal policy by iteratively repeating two simple steps:

- 1. Policy Evaluation: Determine how effective the current policy is.
- 2. Policy Improvement: Use that knowledge to improve the policy.

This process is repeated until the policy no longer improves, at which point it has converged to the optimal policy.

## Model Based Reinforcement Learning ii

#### **Step 1: Policy Evaluation**

Goal: Given a fixed, deterministic policy  $\pi$ , calculate the state-value function  $V^{\pi}(s)$  for all states s.

This step answers the question: "What is the expected long-term reward if we follow policy  $\pi$  from each state?"

To find  $V^{\pi}$ , we solve the **Bellman Equation** for the policy  $\pi$ . This equation expresses the value of a state as the expected immediate reward plus the discounted value of the next state.

$$V^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s)) (R(s,\pi(s),s') + \gamma V^{\pi}(s'))$$

For a finite number of states, this is a system of linear equations that can be solved for  $V^{\pi}$ .

## Model Based Reinforcement Learning iii

#### Step 2: Policy Improvement

Goal: Given the value function  $V^{\pi}$  for a policy  $\pi$ , find a better policy  $\pi'$ .

We improve the policy by acting greedily with respect to the value function  $V^{\pi}$ .

For each state *s*, we update the policy by choosing the action that maximizes the expected value, looking one step ahead:

$$\pi'(s) \leftarrow \operatorname*{arg\,max}_{a \in \mathcal{A}} \left\{ \sum_{s'} P(s'|s,a) \left( R(s,a,s') + \gamma V^{\pi}(s') \right) \right\}$$

This new greedy policy  $\pi'$  is guaranteed to be an improvement over (or equal to) the old policy  $\pi$ . That is, for all states s:

$$V^{\pi'}(s) \geq V^{\pi}(s)$$

9

## Model Based Reinforcement Learning iv

#### **Policy Iteration Algorithm**

- 1. **Initialization**: Start with an arbitrary policy  $\pi_0$ .
- 2. **Iteration**: For k = 0, 1, 2, ...
  - 2.1 **Policy Evaluation**: Compute the value function for the current policy  $\pi_k$ .

$$V_k \leftarrow V^{\pi_k}$$

2.2 **Policy Improvement**: Create a new greedy policy  $\pi_{k+1}$  using  $V_k$ .

$$\pi_{k+1}(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s,a) \left( R(s,a,s') + \gamma V_k(s') \right)$$

- 2.3 Check for Convergence: If  $\pi_{k+1}(s) = \pi_k(s)$  for all states s, then stop.
- 3. **Termination**: Return the final policy  $\pi_{k+1}$  and value function  $V_k$ .

## Model Based Reinforcement Learning v

#### Another Model Based RL Algorithm: Value Iteration.:

The Core Idea: Instead of iterating on the policy, Value Iteration iteratively improves the **value function** until it converges to the optimal value function,  $V^*$ . The optimal policy is then extracted just once at the very end.

The algorithm finds the optimal value function by repeatedly applying the **Bellman Optimality Equation** as an update rule:

#### The Update Rule

Starting with an initial value function  $V_0$  (e.g., all zeros), each iteration k+1 updates the value of every state s using the values from the previous iteration  $V_k$ :

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \sum_{s'} P(s'|s,a) \left( R(s,a,s') + \gamma V_k(s') \right)$$

## Model Free Reinforcement Learning i

"Model Free": MDP is unknown, rely on sampling strategies to learn.

A simple model free RL algorithm is Temporal Difference learning, where the value function is updated using the estimate from one step ahead.

**TD Target** (R): The value we are trying to move our estimate towards. It's the immediate reward plus the discounted value of the \*next\* state.

$$R = r_k + \gamma V_{old}(s_{k+1})$$

**TD Error** ( $\delta_k$ ): The difference between the TD Target and our old estimate.

$$\delta_k = R - V_{old}(s_k) = [r_k + \gamma V_{old}(s_{k+1}) - V_{old}(s_k)]$$

**TD(0) Update Rule**: We update the old value by moving it a small step  $(\alpha)$  in the direction of the TD Error.

$$V_{new}(s_k) \leftarrow V_{old}(s_k) + \alpha \cdot \delta_k$$

## Model Free Reinforcement Learning ii

#### TD(n): n-Step Look Ahead

Generalizes TD(0) by looking n + 1 steps into the future to form the target.

- TD(1) Target:  $R^{(1)} = r_k + \gamma r_{k+1} + \gamma^2 V(s_{k+2})$
- TD(2) Target:  $R^{(2)} = r_k + \gamma r_{k+1} + \gamma^2 r_{k+2} + \gamma^3 V(s_{k+3})$

## General n-Step TD Target $(R^{(n)})$

$$R^{(n)} = r_k + \gamma r_{k+1} + \dots + \gamma^n r_{k+n} + \gamma^{n+1} V_{old}(s_{k+n+1})$$
$$R^{(n)} = \sum_{j=0}^n \gamma^j r_{k+j} + \gamma^{n+1} V_{old}(s_{k+n+1})$$

#### TD(n) Update Rule

$$V_{new}(s_k) \leftarrow V_{old}(s_k) + \alpha [R^{(n)} - V_{old}(s_k)]$$

## Model Free Reinforcement Learning iii

A representative example of Model Free RL is Q Learning, which directly learns the **optimal action-value function**, denoted  $q_*$ , regardless of the policy being followed for exploration.

The update rule is defined as:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\underbrace{R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)}_{\text{TD Target: Best possible next value}} - \underbrace{Q(S_t, A_t)}_{\text{Old value}}\right]$$

Difference between on-policy and off-policy?

## Deep Reinforcement Learning i

Key point of "Deep": Using a Deep Neural Network to approximate the value function or quality function.

#### **Policy Gradient Methods**

#### The Core Idea

Policy Gradient methods optimize a **parameterized policy**  $\pi_{\theta}(s, a)$  directly. The parameters  $\theta$  could be the weights of a neural network.

- The goal is to adjust  $\theta$  to maximize the total expected reward,  $J(\theta)$ .
- We do this by performing gradient ascent on the policy parameters.
- This approach is often more effective in high-dimensional or continuous action spaces.

## Deep Reinforcement Learning ii

**The Policy Gradient Update** The update is guided by the **Policy Gradient Theorem**, which provides an expression for the gradient of the expected reward.

#### **Policy Gradient Theorem**

The gradient of the objective function  $J(\theta)$  is given by the expectation:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[ Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right]$$

Want to see the proof?  $J(\theta) = \sum_{s \in S} P(s) \sum_{a \in A} Q(s, a) \pi_{\theta}(s, a)$ 

#### The Update Rule

The policy parameters are then updated via gradient ascent:

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \alpha \nabla_{\theta} J(\theta)$$

where  $\alpha$  is the learning rate.

## Deep Reinforcement Learning iii

#### The Challenge for Classic RL: Representation

Classic RL methods often use tables to store values for each state (e.g., Q-tables). This is impossible for problems with huge state spaces, like video games, where a single screen has more states than atoms in the universe!

#### The Solution: Deep RL

Combine the power of **deep learning** for function approximation with the decision-making framework of **reinforcement learning**.

We use deep neural networks to approximate the key RL functions:

- Policy:  $\pi(s, a) \approx \pi(s, a, \theta)$
- Value Function:  $V(s) \approx V(s, \theta)$
- **Q-Function**:  $Q(s, a) \approx Q(s, a, \theta)$

## Deep Reinforcement Learning iv

Deep Q-Networks (DQN): DQN uses a deep neural network to approximate the Q-function:  $Q(s, a) \approx Q(s, a, \theta)$ .

#### How It Works

Instead of updating a table, DQN trains the network weights  $\theta$  by minimizing a loss function based on the TD error from Q-learning:

- The network takes the state s (e.g., screen pixels) as input and outputs Q-values for all possible actions.
- The loss function to minimize is the squared difference between the TD target and the network's prediction.

#### **DQN** Loss Function

$$L(\theta) = \mathbb{E}\left[\left(\underbrace{R + \gamma \max_{a'} Q(S', a', \theta_{\text{target}})}_{\text{TD Target}} - \underbrace{Q(S, a, \theta)}_{\text{Prediction}}\right)^{2}\right]$$

## **Reinforcement Learning Overview**

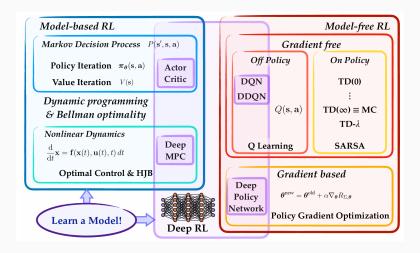


Figure 1: Overview of the World of RL.

## Reinforcement Learning Resources

#### Video Series:

- Steve Brunton's "Reinforcement Learning" series on YouTube.
- Click: Link to the playlist

#### Textbook:

- "Reinforcement Learning: An Introduction" [3]
- Chap 3: Basic MDP formulation.
- Chap 4: DP formulation.
- Chap 6: Classic RL algorithms (TD learning, Q learning).
- Chap 13: Policy gradient method.

#### Survey Paper:

 Comprehensive Survey of Reinforcement Learning: From Algorithms to Practical Challenges [2]

## Recap: Game Theory

## **Key Concepts in Game Theory**

- Players: The decision makers within the game.
- Strategies: The plans or actions that players can take.
- Payoffs: The outcomes or rewards players receive as a result of the strategies chosen.
- Nash Equilibrium:
  - A Nash Equilibrium occurs when each player's strategy is optimal given the strategies of all other players.
  - Formally, a strategy profile  $(s_1^*, s_2^*, \dots, s_n^*)$  is a Nash Equilibrium if no unilateral deviation is beneficial for any player, i.e., for each player i,

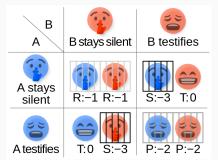
$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*), \forall s_i \in S_i,$$

where  $u_i$  is the payoff function for player i,  $s_i$  is player i's strategy,  $S_i$  is the strategy set for player i, and  $s_{-i}^*$  represents the strategy profile of all players except for player i.

#### The Prisoner's Dilemma

#### Scenario:

- Two members of a criminal gang are arrested and imprisoned.
- Each prisoner is in solitary confinement with no means of communicating with the other.
- The prosecutors lack sufficient evidence to convict on the principal charge, but they have enough to convict on a lesser charge.
- Prisoners are given the opportunity to betray each other or to remain silent.



## The Prisoner's Dilemma (Continued)

#### Nash Equilibrium:

- Each prisoner has two strategies: to "testify" or to "stay silent".
- The Nash Equilibrium occurs when each player's strategy is optimal, given the other's strategy.
- In the Prisoner's Dilemma, the Nash Equilibrium is for both prisoners to betray each other, as betrayal provides a better outcome regardless of the other's decision.
- Despite mutual cooperation yielding a better collective outcome, the individual incentive to defect leads to a worse overall outcome.

## **Game Theory Learning Resources**

- Video Series:
  - Game theory vidoe series on YouTube.
  - Click: Link to the playlist

#### References i



D. Bertsekas.

Dynamic programming and optimal control: Volume I, volume 4.

Athena scientific. 2012.



M. Ghasemi, A. H. Moosavi, and D. Ebrahimi.

A comprehensive survey of reinforcement learning: From algorithms to practical challenges, 2025.



R. S. Sutton and A. G. Barto.

Reinforcement Learning: An Introduction.

A Bradford Book, Cambridge, MA, USA, 2018.